

ELECTRO-TECHNICS \& ROTARY MACHINES

2023

info@langlois-france.com - Tel. : 0033556751333 - www.langlois-france.com

STUDY OF THE 3-PHASE ASYNCHRONOUS MOTOR 300W

SQUIRREL CAGE INDUCTION MOTOR

This engine works as well with a speed variator as directly

connected to a 3-phase supply.	
$\mathrm{U}(\mathrm{V})$	$230 / 400 \mathrm{~V}$
I(A)	$1.5 / 0.9$
H/B/L	$90 / 172 / 235 \mathrm{~m}$
Weight	8.2 kg

Weight 8.2 kg

MAGNETOELECTRIC VOLTMETER

SPEED - TORQUE - POWER DISPLAY UNIT DIRECT DISPLAY

- of the mechanical torque in Nm
- of the speed of rotation in rpm
- of the power in W

Calculates internally the mechanical power $\mathrm{Pu}=\mathrm{M} 2 \mathrm{n} / 60$

CLAMP / MULTIMETER AC \& DC	
- Auto power off after 25 mn	
- Recopy output 10 mV /A 20kHz	
- Back lighting of the screen	
Display	4.000 counts
Converter	AC \& DC
Bandwidth	5 Hzz to 500 Hz
opening of the jaws	12 mm
vDC/vac	400 mV to 600 V
IDC/IAC	4 to 80A
онм	4Ω to $40 \mathrm{M} \Omega$
Farad	40nF to 100uF
Fréquencymeter	5 Hz to 10 MHz
.(1))	Ring for $\mathrm{R}<150 \Omega$
Ranging	Auto \& Manual
Protection	CATIII 600 V ms pol2
Power source	2 batteries LR03
Dimensions / Weight	$210 \times 70 \times 37 \mathrm{~mm} / 200 \mathrm{~g}$

SAFETY LEADS Ø4 REAR STACKING

- \cdot ery supple wire 30 a
- Contacts formed into spring strips - Working voltage 600V CAT III - Working voltage 600 C CAT III
- Test voltage 7400 V during 1 mn - Conforms to the standard CEI1010

VDC
Scale length
Protection
Safety terminals
Fuses
Impedances
Dimensions / Weight $170 \times 110 \times 53 \mathrm{VAC}: 6,3 \mathrm{k} \Omega \mathrm{N}$
100 mV to $1000 \mathrm{~V}(1,5 \%)$
3 to 1000 V (2%)
90 mm
CAT III 600 V Pol 2
yes
HPC 500 V 500 mA
HPC 500 V 500 mA
VDC : $20 \mathrm{k} 3 \mathrm{~V}-\mathrm{VAC}: 6,3 \mathrm{k} \Omega / \mathrm{N}$
Cimensions /Weight $170 \times 110 \times 53 \mathrm{~mm} / 500 \mathrm{~g}$

DC TACHOGENERATOR

Deliver a continuous voltal Voltage at 1000 rom

H/B

SQUIRREL CAGE INDUCTION MOTOR

This engine works as well with a speed variator as directly connected to a 3-phase supply.
$\begin{aligned} & \text { U(V) } \\ & \text { 230/400V }\end{aligned}$

$U(V)$	$230 / 400 \mathrm{~V}$
$\mathrm{I}(\mathrm{A})$	$1.5 / 0.9$
$\mathrm{H} / \mathrm{B} / \mathrm{L}$	$90 / 172 / 235 \mathrm{~m}$
Weight	8.2 kg

3-PHASE SYNCHRONOUS MACHINE

Works as a synchronous motor and 3 -phase alternator.
Equipped with LEBLANC poles for the mains network synchronization.
U(V) $\quad 230 / 400 \mathrm{~V}$
$\begin{array}{ll}\mathrm{H} / \mathrm{B} / \mathrm{L} & 90 / 172 / 470 \mathrm{~mm} \\ \text { Weight } & 18 \mathrm{~kg}\end{array}$ Weight $\quad 18 \mathrm{~kg}$

TORQUE SENSOR	20 Nm
Sensor range	an important inertia 0 Use with 5 V for the measuring span in Nm 10 to -5 V according the rotating way). Torque output signal 2000 rpm. between 12 and 28 VDC.
Maximum rotating speed Sensor supply	

TORQUE \& SPEED DISPLAY UNIT
Range (torque) $\quad 200,0 \mathrm{Nm}$
Analogical output $-5 \mathrm{~V} / 0 /+5 \mathrm{~V}$
Range (speed) $\quad 2000 \mathrm{rpm}$

L

POLAR WHEEL POWER SUPPLY
SERIAL 1 Oto SERIAL $1 \quad 0$ to $60 \mathrm{~V}-0$ to 3 A Parallele 0 to 30 V - 0 to 6 A Dims $\quad 255 \times 145 \times 265 \mathrm{~mm}$ 8 kg Mains $120-240 \mathrm{~V}$ - $50 / 60 \mathrm{~Hz}$

SYNCHRONOSCOPE - 16A - 400V

Allows to securely connect a rotating electric machine to the national $3 \times 400 \mathrm{~V}$ power grid.

- 2 displays indicate the presence and order of the phases.

1 central display makes it possible to compare the voltage and frequency difference between the 3 -phase 400 V network and the rotating machine. - 1 set of LEDs shows the best time to switch the synchronization switch on.

SAFETY LEADS $\varnothing 4$ REAR STACKING

- \cdot ery supple wire 30 a
- Contacts formed into spring strips - Working voltage 600 V CAT III - Cost voltage to the standard CEI1010

MAGNETOELECTRIC AMMETER

IDC 100HA to 10A (1,5\%)
IAC $\quad 10 \mathrm{~mA}$ to 10A (2%)
$\mathrm{mV} \quad 100 \mathrm{mV}$ for the use of external shunt
CAT III 600 V Pol 2
Fuses
Dims / Weight
HPC 500V $3 \mathrm{~A}+\mathrm{HPC} 500 \mathrm{~V} 10 \mathrm{~A}$ $170 \times 110 \times 53 \mathrm{~mm} / 500 \mathrm{~g}$

MAGNETOELECTRIC VOLTMETER
vDC
VAC
Scale length
Protection
Safety terminals
Safety te
Fuses
Impedances
Dims / Weight
100 mV to $1000 \mathrm{~V}(1,5 \%)$
3 to 1000 V (2%)
90 mm
CAT III 600 V Pol 2
yes VDC : $20 \mathrm{k} \Omega / \mathrm{N}$ - VAC : $6,3 \mathrm{k} \Omega \mathrm{N}$ $170 \times 110 \times 53 \mathrm{~mm} / 500 \mathrm{~g}$

MOTORS STAND AND ACCESSORIES
The pack is supplied with coupling fastening, covers and guide rails

Ref. PACK-DCAC1	EDUCATIONAL OBJECTIVES
	- Study the armature/inductor windings of a DC machine.
COMPOSITION OF THE SET	- Understand the influence of the Inductor winding
1 Shunt separated motor 220 / 220 V	on the speed of rotation.
13 -phase synchronous machine - alternator	- Note the voltages and currents in the armature
1 Torque sensor	and in the inductor. DELIVERED WITH TEACHING RESSOURCES
1 DC tachogenerator	
1 Display unit torque and speed	- Note, calculate and plot the electrical and mechanical quantities of the motor.
1 Power supply inductor DC machine	- Realize the balance sheet of motor powers.
1 Rheostat	- Study the functioning of a synchronous machine in Hypo-synchrone and Hyper-synchrone connected to the
1 Polar wheel power supply	national electrical grid.
1 Synchronoscope	- Understand the functioning and the use a synchronoscope.
1 Resistive load	- Study the functioning of a synchronous machine in Hypo-synchrone and Hyper-synchrone connected to
3 Magnétoelectric ammeters	sistive load.
1 AC \& DC multimeter clamp	- Note, calculate and plot the electrical and mechanical quantities of the alternator.
	- Use an ammeter clamp

SHUNT SEPARATED MOTOR 220/220V

This engine works as well with a speed variator
as directly connected

3-PHASE SYNCHRONOUS MACHINE

Equipped with LEBLANC poles for the mains network synchronization.

$$
\begin{array}{ll}
\text { Equipped with LEBLANC po } \\
\begin{array}{ll}
\text { LEB } & 230 / 400 \mathrm{~V} \\
\mathrm{H} / \mathrm{B} / \mathrm{L} & 90 / 172 / 47
\end{array}
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{H} / \mathrm{B} / \mathrm{L} & 90 / 17 \\
\text { Weight } & 18 \mathrm{~kg}
\end{array}
$$

	MAGNETOELECTRIC AMMETER	
,	IDC	100HA to 10A (1,5\%)
	IAC	$10 \mathrm{mAto} 10 \mathrm{~A}(2 \%)$
	mV	100 mV for the use of external
		shunts
	Scale length	90 mm
	Protection	CAT III 600 V Pol 2
	Safety terminals	yes
	Fuses	HPC 500V 3A + HPC 500V 10A
	Dims / Weight	$170 \times 110 \times 53 \mathrm{~mm} / 500 \mathrm{~g}$

MAGNETOELECTRIC VOLTMETER

Scale length

Protection
Safety te
Fuses
Impedances
Dims / Weight

RESISTIVE LOAD

 Power 0.5kWVariation in steps of 5% Portable type Weight: 15 kg
his power supply includes : - one variable DC suply

- one fixed DC supply

Protection of users is ensured by galvanic insulation of outputs. -

CLAMP / MULTIMETER AC \& DC	
- Auto power off after 25 mn	
- Recopy output $10 \mathrm{mV} / \mathrm{A} 20 \mathrm{kHz}$	
- Back lighting of the screen	
Display	4.000 counts
Converter	AC \& DC
Bandwidth	50 Hz to 500 Hz
opening of the jaws	12 mm
VDC /VAC	400 mV to 600 V
IDC/IAC	4 to 80A
онм	4Ω to $40 \mathrm{M} \Omega$
Farad	40 nF to 100 FF
Fréquencymeter	5 Hz to 10 MHz
.(1))	Ring for $\mathrm{R}<150 \Omega$
Ranging	Auto \& Manual
Protection	CATIII 600Vrms pol2
Power source	2 batteries LRO3
Dimensions / Weight	$210 \times 70 \times 37 \mathrm{~mm} / 200 \mathrm{~g}$

SAFETY LEADS $\varnothing 4$ REAR STACKING

- Contacts formed into spring strips - Contacts formed into spring strin - Working voltage 600 V CAT III - Conforms to the standard CEI1010

MOTORS STAND AND ACCESSORIES

The set is supplied with coupling, fastening, covers and guide rails.

2 YEARS GUARANTEE

POWER SUPPLY INDUCTOR DC MACHINES
This power supply includes

:

RHEOSTAT FOR INDUCTOR 0 to 1500 / / 0.65A

- one fixed DC supply
Protection of users is ensured by galvanic insulation of outputs.
- Mains: Mains cable
- On/Off: General switch and light
- DC variable output: $0-240 \mathrm{~V} / 3 \mathrm{~A}$
- DC fixed output:
- Input protection:
- Output protection: by time delay fuses
- Smoothing: by by capacitors
- Dimensions / weight: $210 \times 245 \times 350 \mathrm{~mm} / 20 \mathrm{~kg}$

MAGNETOELECTRIC VOLTMETER

MAGNETOELECTRIC AMMETER	
IDC	$100 \mu \mathrm{~A}$ to $10 \mathrm{~A}(1,5 \%)$
IAC	$10 \mathrm{mAton} 10 \mathrm{~A}(2 \%)$
mV	10 mV for the use of external
	shunts
Scale length	90 mm
Protection	CAT III 600 V Pol 2
Safety terminals	yes
Fuses	HPC $500 \mathrm{~V} 3 \mathrm{~A}+\mathrm{HPC} 500 \mathrm{~V} 10 \mathrm{~A}$
Dims / Weight	$170 \times 110 \times 53 \mathrm{~mm} / 500 \mathrm{~g}$

	MAGNETOELECTRIC VOLTMETER	
	- Auto power off after 25 mn	
	- Recopy output 10 mV	20 kHz
	- Back lighting of the screen	
	Display	4.000 counts
	Converter	AC \& DC
	Bandwidth	5 Hzz to 500 Hz
	opening of the jaws	12 mm
	VDC/VAC	400 mV to 600 V
0	IDC/IAC	4 to 80A
-	онм	4Ω to $40 \mathrm{M} \Omega$
	Farad	40 nF to 100uF
	Fréquencymeter	5 Hz to 10 MHz
	.(1))	Ring for R < 150Ω
	Ranging	Auto \& Manual
	Protection	CATIII 600Vrms pol2
	Power source	2 batteries LRO3
	Dimensions / Weight	$210 \times 70 \times 37 \mathrm{~mm} / 200 \mathrm{~g}$

VDC
VAC

Scale length

Scale length
Safety terminals
Fuses
Impedances
Dims / Weight
100 mV to $1000 \mathrm{~V}(1,5 \%)$
3 to $1000 \mathrm{~V}(2 \%)$
3 to $1000 \mathrm{~V}(2 \%)$
CAT III 600 V Pol 2
yes
HPC 50
HPC 500V 500mA VDC: $20 \mathrm{k} \Omega / \mathrm{N}-\mathrm{VAC}: 6,3 \mathrm{k} \Omega \mathrm{N}$ $170 \times 110 \times 53 \mathrm{~mm} / 500 \mathrm{~g}$

POWER SUPPLY FOR BAKE

Current control is devised around a microcontroller circuit providing high precision of the delivered current.
Manual cotrol of the brake.

- Mains power supply $230 \mathrm{VAC}-50 / 60 \mathrm{~Hz}$
- Max output current 2A.
- Output load 4-20 ohms
- Brake control analogue input signal 0-10V DC
- Dimensions: $240 \times 180 \times 130 \mathrm{~mm}$

SAFETY LEADS ø4 REAR STACKING

- Very supple wire 30 A - Contacts formed into spring strips - Working voltage 600 V CAT III - Conforms to the standard CEI1010

MOTORS STAND AND ACCESSORIES
The set is supplied with coupling,

Ref. PACK-ACDC1

COMPOSITION OF THE SET
1 Squirrel cage three-phase motor
1 Shunt separated DC generator
1 Torque sensor
1 DC tachogenerator
1 Variable three-phase power supply
1 Resistive load
1 Power supply inductor DC machine
1 Rheostat
1 Display unit torque and speed
3 Magnetoetectric voltmeters
2 Magnetoelectric ammeters
1 AC \& DC multimeter clamp
educational objectives

- Study the stator and the rotor of an asynchronous motor.
- Study the pairs number of poles and the influence on the rotating speed. - Note, calculate and plot the electrical and mechanical quantities of the motor.
- Realize the balance sheet of motor powers.
- Study the armature/inductor windings of a DC machine.

- Understand the influence of the Inductor winding on the speed of rotation - Note the voltages and currents in the armature and in the inductor
- Note, calculate and plot the electrical and mechanical quantities
of the generator.
- Realize the balance sheet of generator powers.
- Use an ammeter clamp.

SQUIRREL CAGE INDUCTION MOTOR

This engine works as well with
connected to a 3 -phase supply

SHUNT SEPARATE DC GENERATOR

POWER SUPPLY INDUCTOR DC MACHINES
This power supply includes - one fixed DC supply

Protection of users is ensured by galvanic insulation of outputs.

- Mains: Mains cable
- On/Off: General switch and light
- DC variable output: $0-240 \mathrm{~V} / 3 \mathrm{~A}$
- DC fixed output:
- Input protection:
- Output protection: by time delay fuses
- Smoothing:
- Dimensions / weight: $210 \times 245 \times 350 \mathrm{~mm} / 20 \mathrm{~kg}$

RESITIVE LOAD

$$
\begin{aligned}
& \text { KESTVEC } \\
& \text { Power 0.5kW }
\end{aligned}
$$

Nb switches: 6
Variation in steps of 5%
Portable type
Portable type

MAGNETOELECTRIC AMMETER	
IDC	100 HA to $10 \mathrm{~A}(1,5 \%)$
IAC	10 mA to $10 \mathrm{~A}(2 \%)$
mV	100 mV for the use of external
	shunts
Scale length	90 mm
Protection	CAT III 600 V Pol 2
Safety erminals	yes
Fuses	HPC $500 \mathrm{~V} 3 \mathrm{~A}+\mathrm{HPC} 500 \mathrm{~V}$ 10A
Dims $/$ Weight	$170 \times 110 \times 53 \mathrm{~mm} / 500 \mathrm{~g}$

AC/AC FREQUENCY CONVERTER

PRIMARY IN 230 V SINGLE-PHASE 50/60Hz
Output voltages: 3 -phase 230 V variable frequency

MAGNETOELECTRIC VOLTMETER

VDC

VAC

Scale length
Protection Safety te
Fuses
Impedances
Dims / Weight
100 mV to $1000 \mathrm{~V}(1,5 \%)$
3 to 1000 V (2\%)
90 mm
CAT III 600 V Pol 2
yes
yes
HPC 500 V 500 mA VDC : $20 \mathrm{k} \Omega / \mathrm{N}$-VAC : $6,3 \mathrm{k} \Omega \mathrm{N}$ $170 \times 110 \times 53 \mathrm{~mm} / 500 \mathrm{~g}$

RHEOSTAT FOR INDUCTOR 0 to 3300 / / 0.44A

SAFETY LEADS ø4 REAR STACKING

- \cdot ery supple wire 30 a
- Contacts formed into spring strips - Working voltage 600 V CAT III - Test voltage 7400 V during 1 mn
- Conforms to the standard CE1010

MOTORS STAND AND ACCESSORIES
The set is supplied with coupling, fastening, covers and guide rails.

TORQUE \& SPEED DISPLAY UNIT
Range (torque) $\quad 200,0 \mathrm{Nm}$
Analogical output -5V/0/+5
Range (speed) $\quad 2000 \mathrm{rpm}$

OPERATING PRINCIPLE
A 1500 W asynchronous motor, powered by a $3 \times 400 \mathrm{~V}$ source, is charged by means of an alternator. The electrical power generated by the alternator is drained
either in the form of a adjustable resistive charge or throueither in the form of an adijstable resistive charge or throu-
ghout the public network. ghout the public network.
The power consumed by the motor is measured using the "two power consumed bethod by the motiot is a wattmeater switch and an analogue wattmeter.
The voltage and current consumed by the motor are mea The voltage and current consumed by the motor are m e
sured using an analogue voltmeter and ammeter.
On the alternator the electrical quantities such as pow sured using an analogue voltmeter and ammeter.
On the alternator, the electrical quantities such as power,
voltage and current supply are measured using a digital voltage and current supply are
wattmeter with three displays.
A brushless torque sessor (requiring no maintenance) mea-
sures the motor torqe, sures the motor torque, whereas the tachometer generator
measures the rotation speed. An analogue unit with three measures the rotation speed. An ancloguve unit win vises.
displays shows the torque, speed and useful power ralue.

The PACK-AC2 power unit kit (power unit + accessories) can be used for studying a 1500 W asynchronous motor.

Charged by a 1500 W three-phase alternator, the charge properties are plotted based on measure-
ments taken by various analogue or digital devices. Comprises 18 items, motors + accessories.
ref. PACK-AC2
ALSO AVALLABLE IN 3OOW. CONTACT US.
TUTORIALS DESCRIBED IN THE INSTRUCTIONS SUPPLIED WITH PACK-AC2

STUDY OF THE ASYNCHRONOUS INDUCTION MOTOR

- Study of the star/delta coupling of the asynchronous motor
- Understanding and undertaking motor wiring.
- Measurements and comparison of the various voltage and current values
according to the coupling type selected.
according to the coupling type selected.
- Study of the "two powers" method.
- Powers measuruements P1/P2
- Power measurements P1/P2.
- Calculation of the total power

Cal

- Study of motor operation with no load, with a load and with an overload,
using the 1500 W alternator.
- Theoretical reminders of the
an asynchronous motor.
- Understanding and undertaking motor wiring with measuring devices
- Calculations of the electrical and mechanical quantities of the motor using its identification plate, such as:

measured during the motor tests
- Ploting of properties based on motor measurements such as
- Torque as a function of useful power**
Efficiency as a function of useful power*

Efficiency as a function of useful power*
Current as a function of useful power*
Rotlation speed as a function of useffl power*

- Slip as a function of useful power
* or other variable
study of the alternator
- Study of the star/delta coupling of the asynchronous motor.
- Measurements and comparison of the various voltage and current values according to the coupling type selected.
- Study of alternator operation with no load, with a load and with an overload, using a resistive load:
- Theoretical reminders of the mathematical formulae which apply to the alternata - Understanding and undertaking alternator wiring with measuring devices. - Measurement and ploting of the properties of the magnetic circuits hysteresis cycle. - Calculations of the electrical quantities of the alternator based on its identification plate, such as:

Number of pairs of poles \qquad - Power supplied
\checkmark Joule loss Power consumed by the rotary field Joule loss mechanical quantities at various points of the motor load Comparison of the theoretical calculation of values with those values measured Uuring the practical tests
oltage as a function of the allernator's load:
Valage as a tunction of the supplied current
Calculation of the voltage decrease as a function of the load
Theoretical plotting of the shapes of the capacitive and inductive loads, compared with a resistive load

- Andysis of results and
- Study of the operation of the synchronised alternator on the public network

Understanding and undertaking alternator wiring on the network.
Use of the speed controller
Synchronisation on the mains network

- Study of the operation of a short-circuited alternator:
- Measurement of the short-circuit current \& the current
- Measurement of the short-circuit current \& the current in the rotary field
- Ploting of properties
DEIUEEED COMPLEEIE WITH TEACHING RESOURCES

ref. PACK-AC1

ALSO AVALABLE IN 300W. CONTACT US.
TUTORIALS DESCRIBED IN THE INSTRUCTIONS SUPPLIED WITH PACK-AC1

- Study of the star/delta coupling of the asynchronous motor.
- Understanding and undertaking motor wiring.
- - eacusurements and comparisiso of the various voltage and current values
according to the coupling type selected.
- Measurement of properities on a PC. according to the coulling type selected.
- Measurement of properties on a PC.
- Measurement of properties on a PC
- Study of the operation of the motor controlled by the speed controller (frequency converter)
Understanding and undertaking the wiring of the speed controller to the
motor.
- Adivstment of speed controller setings.
- Adiustment of speed controler setings.
- Adjustment of motor acceleration and deceleration rotation speed settings. - Measurement on a PC of the rotation speed properties as a function of time.
- Study of motor operation with no load, with a load and with an overload, Using the $230 / 400 \mathrm{~V}$ three-phase power supply.
- Theoretical reminders of the mathematical formulae concerning an asynchronous induction motor.
- Understanding and undertaking motor wiring with measuring and monitoring devices.
ical and mechanical quantities of the motor based
its idenification plate, such as:
\sim Synchronism speed
\sim Number of pairs of motor poles
\checkmark Slip
\checkmark forque

OPERATING PRINCIPLE

A speed controller, constant V/F frequency converter controls the motor's rotation speed according to the various acceleration or deceleration ramps. A three-phase power supply on casters is also used to supply power to the moto replacing the speed controller.
A 1500 W ventilated powder
aled powder brake loads the motor with values of between 0 and 125% inclusive of the rated load. A brushless torque sensor (requiring no maintenance) measures the various torque values, whereas a DC tacho
generator provides an image signal of the motor's rotation
speed.
A first unit, with three digital displays, shows the electrical quantities such as voltage, current and power used by the motor. The second unit, which also has three displays, shows the mechanical quantities such as torque, rotation speed and useful power.
All of these qua
be displayed in real time as all as the motor load curves, con

Example of monitoring with a display of curves and

DESCRIPTION OF THE 12 ITEMS INCLUDED IN PACK-ACI REFERENCE		
3-phase asynchronous motor Ref. MAS22 - Qty 1 Rotary torque sensor Ref.CR2-V2-Qty 1	Powder brake Ref. FP2-Qty 1 DC tachogenerator Ref. DYTA2 - Qty 1	Stand on wheels Ref. CTC - Qty 1 Guide rails Ref. RGC - Qty 1
3 -phase supply on wheels Ref. TRT8PE - Qty 1	Frequency converter Ref. ACVAR5 - Qty 1	 Set of 38 safety leads Ref. 400S - Qty 1 set
Digital wattmeter Ref. WATTELEC - Qty 1	Measurement of mechanical quantities Ref. MECAWATT2 - Qty 1	Real time and monitoring system Ref. PCWATT - Qty 1

STUDYING THE 1.5KW DC MOTOR AND 3-PHASE ALTERNATOR

ref. PACK-DC1 ALSO AVAIABLE IN 300W. CONSULT Us.
TUTORIAL WITH PACK-DC1

- Study of connection schematics with shunt excitation and separate excitation (independent).
- Understanding and dundertaking motor wiring depending
On the selected excitation the - Understanding and undertaking motor wiring depending
on the selected excitation type.
- Measurements and comparisons of the various consumed
per
 power, voltage and current values depending on the selec-
ted excitation type.
- Calculation method used for determining the resistance
value:
- of the start-up rheostat
value:
- of the start-up rheostar
- of the excitation rheostat
- Study of the motor's operation when unloaded,
when loaded and when overloaded with separ when loaded and when overloaded with separate
excitation (independent) and with shunt excitation: exxitation (independent) and with shunt excitition:
-Theorefical reminders of the mathematical formulae applying to a DC motor.
- Understanding and undertaking motor wiring with
measuring devices. measuring devices.
ments of electrical and mechanical quantifies and measurementis of electrical and met
points of the motor load:

Current consumption of field system/in the rotor
\checkmark Power consumption of field system/in the rotor
\sim Rotation speed
\sim Useful power

- Motor torque
\checkmark Counter-lectromotive force
\checkmark Rotor Joule
- Ploting of properties based on motor measurements:
- Rotation speed as a function of the field system current
- Rotation speed as a function of the field system current
- Rotation speed as a function of the rotor current - Rotation speed as a function of the rotor current
- Efficiency y a a function of the rotor current - Efficiency as a function of the rotor current
- Torque as a function of the rotor current - Torque as a function of the rotor current
- Power consumplion as a function of the rotor current
- Analysis of results and conclusion

46

An asynchronous motor can convert mechanical energy into electrical energy.
To eperform this conversion it has to be driven above the synchronous speed. To perform this conversion, it has to be driven above the synchronous speed.
PACC--HYPRR is a set of 2 asynchronous motors mounted on the same axis of rotation with accessories to study hypersynchronous behaviour. The speed controller drives the first motor accessories to study hypersynchronous behaviour. The speed controler drives the in A central zero watlmeter indicates the direction of the electrical energy consumed or fed in
the case feeding into the grid. A central COS ϕ phase-meter demonstrates the change o the case of feeding into the grid. A central $\operatorname{COS} \phi$ phase-meter demonstrates the change of epacitors or speed variation.
EDUCATIONAL OBJECTIVES

- Studying the hyposynchronous and hypersynchronous operations
- Studying the effect of a battery of capacitors on the $\cos \phi$ value
- Studyyng synchronisation with the national
- Studying energy use at an isolated site.
- Stadying energy use at an isolated site.
- Calculating the outputs of an energy production system.
- Using a clamp ammeter.

TEACHING RESOURCES STUDENT \& TEACHER

- Procedure of synchronisation with the national grid.
- Hyposynchronous and hypersynchronous measurement.
- Reading $\operatorname{COS} \phi$ using a battery of capacitors and consequences
- Ploting of the electrical characteristics of the energy production system.
- Calculataion of the overall output.
- Study of the operation at an isolated site.
ref. PACK-HYPER

REPLACEMENT COUPLINGS

REF	Power	Specification	dø	D \varnothing
ACC1-14	300w	HUB	14 mm	42 mm
ACC1-17	300w	HUB	17 mm	42 mm
ACC1-19	300w	HUB	19 mm	42 mm
AC-43	300w	SLEEVE	sleeve	45 mm
ACC2-19	1500w	HUB	19 mm	52 mm
ACC2-24	1500w	HUB	24 mm	52 mm
AC-56	1500w	SLEEVE	sleeve	56 mm
ACC3-19	3000w	HUB	19 mm	69 mm
ACC3-24	3000w	HUB	24 mm	69 mm
ACC3-28	3000w	HUB	28 mm	69 mm
AC-66	3000w	sleveve	sleeve	74 mm

DC SHUNT MOTOR SEPARATE WINDING

DC GENERATOR SHUNT ON ROCKING STAND

POWER SUPPLY FOR 230V

tachymeter

TAC-90 displays

 in rom the rotaryin rpm the rotary
speed of machines SH90, Al90, GE990 by
converting the frequency of the tachogenerator converting the frequency of the tacho
into voltage. \mathbf{i} isplay $31 / 2$ digits. into a voltage. Display $31 / 2$ digits.
Analog output $0-10 \mathrm{~V} 10 \mathrm{~mA}$ max. ref. TAC90
DIGITAL TORQUE METER
II displays via
a DIN plug,
the strength
of torque of
generaror GEP9
and brake FR90.
Analog output: 0 to $10 \mathrm{~V} 2 \mathrm{~mA} \mathrm{max}$.
ref. GAMA96

POWER SUPPLY FOR 24V

Th TACHOGenerator bult-In into the

The machines SH90, A190 \&GE90 are equipped with a tachogenerator. lits an alternating tachometer which provides a voltage \& a frequency proportional to the speed of rotation.

- frequency: 200 H
-requency: 200 Hz at 1000 rpm
-Voltage: 5 VAC at 1000 rpm

IF TORQUESENSO

3-PHASE ASYNCHRONOUS SQUIRREL CAGE MOTOR

SPEED CONTROLLERS

The three-phase motors can be controlled by Ihis converter feom
operating speed.

$3 \times 230 \mathrm{~V}$ on terminals

ref. VAR9OR
$3 \times 24 \mathrm{~V}$ on terminals
ref. VAR24S

SINGLE-PHASE CAPACITOR MOTOR

POWDER BRAKE

These engines work as well with a speed variator as directly connected

to a 3 -phases supply. | to a 3-phase supply. | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| REF | $\mathbf{U (V)}$ | $\mathbf{I})$ | H | B | L | Weight |
| MASS12 | $230 / 400 \mathrm{~V}$ | $1.5 / 0.9$ | 90 | 172 | 235 | 8.2 kg |
| MAS42 | $400 \mathrm{~V} / 690 \mathrm{~V}$ | $0.9 / 0.5$ | 90 | 172 | 235 | 8.2 kg |

Works as a synchronous motor and 3-phase alternator Equipped with LEBLANC poles for the mains network synchronization. \begin{tabular}{llllll}
\hline REF \& U (V) \& H \& B \& L \& Weight

\hline

\hline MSM10 \& $230 / 400 \mathrm{~V}$ \& 90 \& 172 \& 470 \& 18 kg

\hline
\end{tabular}

3-PHASE ASYNCHRONOUS SLIP RING INDUCTION MOTOR

1 coil winding motor with $4 / 8$ pole Dalhander coupling for quadratic resistive
torque machines

| REF | n in RPM | $\mathrm{U}(\mathrm{V})$ | $\mathrm{I}(\mathrm{A})$ | $\mathrm{P}(\mathrm{W})$ | H | B | L | Weight |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | DAL10 | $1500 / 750$ | $400 / 400$ | $1.1 / 1$ | $300 / 150$ | 90 | 172 | 275 | 7.3 kg |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3.PHASE ASYMCHRONOUS CAGE MOTOR
WIH VECTORAL CONROL

REF	U(V)	1 (A)	H	B	L	Weight
VAV	230/400V	5.9 /3.4	112	190	580	24kg
VAV50	400/690V	3.4/1.95	112	190	580	24 kg

POLYEXCITATION COMPOUND DC MOTOR

SHUNT / SEPARATED DC GENERATOR

POWDER BRAKE PRINCIPLE
The DC current injected into the brake coil creates a field which causes the magnetic powder placed in the eir gap to agglomerate. The braking toraue is
proportional to the field current alone: in particularitis independent of the speed proportion. Waste heat is eliminated by forced ventilation. A circuit breaker cuts
of rotion the field current in the event of the brake overheating.

TACHOMETER FOR
1024PTS ENCODER

These engines work as well with a speed variator
as diredly connected to a 3 -phase supply.

 \begin{tabular}{lllllll}
\hline MAS32* \& $230 / 400 \mathrm{~V}$ \& $10.6 / 6.1$ \& 132 \& 216 \& 445 \& 28 kg

\hline MASC * \& $400 \mathrm{~V} / 690 \mathrm{~V}$ \& $6.1 / 35$ \& 132 \& 216 \& 445 \& 28 k

\hline

\hline MAS62* \& $400 \mathrm{~V} / 690 \mathrm{~V}$ \& $6.1 / 3.5$ \& 132 \& 216 \& 445

\hline \& \& 28 kg

\hline
\end{tabular}

3-PHASE SYNCHRONOUS MACHINE

Works as a synchronous motor and a 3 -phase alternator. Equips as a synchronous motor and a \mathbf{a}-phase alternator. L EBLANC poles for mains network synchronization. \begin{tabular}{llllll}
\hline REF \& U en V \& H \& B \& L \& Masse

\hline

MSM30 \& $230 / 400 \mathrm{~V}$ \& 132 \& 216 \& 490 \& 49 kg

\hline MSM30-C1 \& similar than MSM300 with 1024 points encoder.

\hline
\end{tabular}

Fitted with a 1024 pts encoder and a forced ventilation to run at a slow speed \begin{tabular}{lllllll}
\hline REF \& $\mathbf{U}(\mathrm{V})$ \& $\mathbf{I} / \mathrm{A})$ \& H \& B \& L \& Weight

\hline VAV30 \& $230 / 400 \mathrm{~V}$ \& $10.6 / 6.7$ \& 132 \& 216 \& 620 \& 28 k 9

\hline

VAV30 \& $230 / 400 \mathrm{~V}$ \& $10.6 / 6.7$ \& 132 \& 216 \& 620 \& 28 kg

\hline VAV60 \& $400 / 690$ \& $6.1 / 3.5$ \& 132 \& 216 \& 620 \& 28 kg

\hline
\end{tabular}

REF	$\mathbf{U}(\mathbf{N})$	$\mathbf{I}(\mathbf{A})$	\mathbf{H}	B	L	Weight
MAT30	$230 / 400 \mathrm{~V}$	$13.2 / 7.5$	132	216	685	70 kg
MA330						

ROTARY MACHINES 1500RPM RANGE 3000W

SHUNT / SEPARATED DC MOTOR 220/220V

This engine works as well with a speed variator as directly
on a DC supply.
on a DC supply.

REF	$\mathbf{U (V)}$	$\mathbf{I}(\mathbf{A})$	H	B	L	Weight
CC30	Multitensions	16.5 A	132	216	550	80 kg

| CC30 | Multitensions | $\begin{array}{lllll}16.5 \mathrm{~A} \\ \text { with 220V }\end{array}$ | 132 | 216 | 550 | 80 kg |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

POLYEXCITATION COMPOUND DC MOTOR

Designed to be high-performance motor (characteristics below)
this machine also works as a generator.

| REF | $U(V)$ | I | (A) | H | B | L |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | REF | U(V) | (A$)$ | H | B | L | Weight |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PM30 | 220 V | 17.9 A | 132 | 216 | 570 | 83 kg |

SHUNT / SEPARATED DC GENERATOR

POLYEXCITATION COMPOUND DC GENERATOR

Designed to be high-performance generator (characteristics below),
this machine also works as a motor.

| REF | $U(V)$ | $I(A)$ | H | B | L | Weight |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | PE30 | 270 V | 13.6 A | 132 | 216 | 570 | 83 kg |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

POWDER BRAKE REINFORCED

As the powder brakes of the other ranges, a simple DC current under a low voltage around 1 VV generates a constant braking torque for all the speeds
belween 0 t 1500 rem. between 0 to 1500 rpm .
This reinforced model is
This reinforced model is composed of 2 independent units and linked together
by the rotating shaft. Thanks to this power distribution, dissipation of energy is by the rotating shaft. Thanks to this power distribution, dissipation of energy is
most effective. An automatic monitoring avoid the functioning of only one unit or
if the ventilation is not complet. most effective. An automatic monitioring avoid the functioning of only one unit or
if the ventilation is not complete. The measure of the torque required a rotating unit (see page 58) which needs to be placed indifferently on the leff or on the right.
Maximum rotating unit: 1800 rpm

REF	FP332
Voltage/Current max for blocking	$14 \mathrm{~V} / 0.8 \mathrm{~A}$
Max torque	80 Nm
H/B/Lin mm	$132 \times 216 \times 720$
Weight	86 kg
Ventilation (MAINS 230V)	Fan

TORQUE SENSORS						
	BRUSHLESS VERSION These brushless torque sensors have to be placed between 2 machines and measure the torque sensor V 2 and the twist torques and speeds for the version V22. It is equipped with an optical torque so without mechanical wear and maintenance, with a dynamic range allowing to measure some important torque changes and high speeds. The values of starting are so easily measurable. Torque output signal: 0 to 5 V for the measuring span in Nm (0 to -5 V according the rotating way). Maximum rotating speed: 2000 rpm Sensor supply: between 12 and 28 VDC					
DISPLAYS PAGE 62	REF	Power	Sensor range	Speed output	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~mm} \end{aligned}$	Use with an important inertia
*The use of an inertia wheel + a rotary sensor (CR design) between the motor and the brake gives starting torques which can go to 7 times the operating torque.	CR1-V2	300w	20 Nm	no	220	Yes
	CR1-V22	300w	20 Nm	5 V at 2500 rpm	220	Yes
	CR2-V2*	1500w	50 Nm	no	220	no*
	CR2-V22*	1500w	50 Nm	5 V at 2500 rpm	220	no*
Connecting cable and protection casing supplied with all our sensors.	CR2-100-V2	1500w	100 Nm	no	220	Yes
	CR2-100-V22	1500w	100 Nm	5 V at 2500 rpm	220	Yes
	CR3-V2*	3000w	50 Nm	no	220	no*
	CR3-V22*	3000w	50 Nm	5V at 2500 rpm	220	no*
	CR3-100-V2	3000w	100 Nm	no	220	Yes
	CR3-100-V22	3000w	100 Nm	5 V at 2500 rpm	220	Yes

DC TACHOGENERATORS

These tachogenerators deliver a continuous voltage proportional to the rotating speed. These tachogeneratiors deliver a continuous volage proporified
Supplied complete with couplings, housings and screws bolt.

REF	Power	Voltage at 1000 rpm	Connector	H(mm)	B (mm)	L(mm)
DYTA10	300 W	10 V	Terminals	90	172	170
DYTA2	1500 W	10 V	Terminals	112	190	130
DYTA3	3000 W	10 V	Terminals	132	216	130

INERTIA WHEEL

MOTORS STAND ON WHEELS \& GUIDE RAILS

These rails will be used for aligning and fixing the machines constituting of the made up groups according to your own configuration. With each pair of guide rails are included 2 end of shaft protective covers and 1 intermediate housing

REF	Power	Overall length	Pitch of rails	Weight
ST10	300 W	1100 mm	172 mm	7 kg
STL	300 W	1450 mm	172 mm	8 kg
RGA *	$1500 / 3000 \mathrm{~W}$	950 mm	$190 / 216 \mathrm{~mm}$	16 kg
RGC	$1500 / 3000 \mathrm{~W}$	1600 mm	$190 / 216 \mathrm{~mm}$	24 kg
RGL**	$1500 / 3000 \mathrm{~W}$	1900 mm	28 kg	

*RGA is only compatible with the stand on wheels CTA

SPEED - TORQUE - POWER

	ref. MECAWATT2 For brushless sensors FisK
GENERAL FEATURES MECAWATT is a display unit for showing 3 mechanical values of torque, speed, DIRECT DISPLAY and power, with measurements taken on rotating machines using a torque sensor - of the mechanical torque in Nm and a tachogenerator. It also includes: - a manually adjustable energising source for a powder brake, Brushless torque sensors (-V2) or by external signal - of the speed of rotation n in rpm . - analog copies of output of the three mechanical values. Sensors used: any tachometric dynamo of rating 10-20-60 V at 1000 rpm . Supply: $230 \mathrm{~V} 50 \mathrm{~Hz}, 30 \mathrm{VA}$. Dimensions: $375 \times 80 \times 275 \mathrm{~mm}-5.8 \mathrm{~kg}$. - of the power W Height of digits : 14 mm (text: 6 mm) MECAWATT calculates internally the mechanical power $\mathrm{Pu}=\mathrm{M} 2 \pi \mathrm{n} / 60$ and directly displays the results in watts.	FRONT PANEL ADJUSTMENTS - manual control of braking intensity ANALOGUE INPUTS AND OUTPUTS The rear of MECAWATT is equipped with: - a 0 to 10 VDC output at 0 to 500 mA manual energising adjustment for a powder brake - $\mathrm{a}-5$ to $+5 \mathrm{~V}^{*}$ average torque image output** - a -5 to $+5 \mathrm{~V}^{*}$ average speed image output. - a -5 to $+5 \mathrm{~V}^{*}$ average power image output ** The inn indicares the direction of rotation of the motor. MECAWATT is compatible with - motors of 90-300-1500-3000W - rotating torque sensors of 2 to 100 Nm - tachometric dynamos of $10-20-60 \mathrm{~V}$ at $1,000 \mathrm{rpm}$.

ref. WAATTELEC

WATELEC is a digital multimeter with flocting invts sinulaneols WATEELEC is a digital multimeter with flocating inputs simultaneously displaying the
3 electric values: voltage, current and power. WATTELEC measures the TRMS ef fective values of the UI W measurements, possibly with direct componen superimposed. The wide bandwidth of the eqpararatus allows measurements to be made from DC to 70 kHz or on chopped signals frequency converters, industrial choppers, rectified supplies etc.). Thp eapparatus voltage and current inputs sre in
sulated bertween each other and relative to earth. WATEELECC measures single phase sulated between each ofter and relative to earth. WATELEC measures single phase

DISPLAY:
Height of digits 14 mm (text: 6 mm)
Power ranges are switched dutomatically.

Inputs

Voltage inputs: Three floating potential voltage terminals, situated at nating, continuous or composite voltage, or a ballanced three phase voltage.
These inputs are electronically protected against over voltage
Max voltage: 400Vrms single Max. voltage: 400 Vrms single phase, 700 Vrms three phase
Current inputs: Two floating potential current terminals, situated at the Current inpuis: Who lloating potential current terminals, situated at the
rear of the apparatus allowing the application of an alternating, oontinuous or composite current. Imax $=20$ A. The current input is protected by a delay fuse, allowing measurements on starting up a motor RECOPY OUTPUTS
Voltage output: 0 to $10 \mathrm{~V} D C$ signal for 0 to 1000 V rms entering. Current output: 0 to $10 \mathrm{~V} D \mathrm{DC}$ signal for 0 to 20 Arms entering. Power output: 0 to 10 V DC for 0 to $0.2 \mathrm{~kW}-0$ to $2 \mathrm{~kW}-0$ to 20 kW ;
these three rating these three ratings are switched automatically. Important: these three outputs are insulated from the voltage and currents applied to the input terminals of the apparatus.

OTHER CHARACTERISTICS

A switch on the front panel selects the mode single or three-phase. A reset butlonallows to reset the displays when the maximum voltage
is exceeded. Input and oulputs hiro
Dims:
Supply: $220-202020 \mathrm{VAC} 5 \mathrm{~mm} .5 \mathrm{~kg}$
50 VA

ACQUISITION SYSTEM
ref. PCWATT
PCWATT lets you record and display on a screen mechanical and electrical quantities from the rotating machines lasynchronous motors, synchronous machines, single-phase motors and $D C$ machines). PCWAT is an interface that connects the motor test bench to a PC via a measuring bay composed of a t leas MECAWAT and WATELECC*. The LOGIREAL soffware
delivered with PCWAT lefs one display these quandites in real time delivered with PCWAT lets one display these quantifies in real time. During acquisition, the
values for voltage, current, power consumed, torque, rotation speed and useful power are shown both as curves and as numeric displays.
After acquisition, PCWATT uses the recorded values to calculate and trace additional me chanical and electrical characterisitis, such as slip, efficiency, active power, reactive powe the power factor, and so on.

* Connection to the PC via USB cable

EXAMPLE OF COMPLETE ACQUISTIION SOLUTION
FOR AC MACHINES STUDY
1 PCWATT (with software) MECAWATI2 1 WATTELEC

LOGYREAL SOFTWARE SUPPLIED WITH PCWATT Datasheet on www.langlois-france.com

REFERENCES WITH PRIMARY IN 230 V SINGLE-PHASE 50/60Hz

REF	ACVAR1	ACVARI-U	ACVAR5	ACVAR5-u	VAR-box	VAR-BOX-03
Emergency stop push button	No	Yes	No	Yes	No	No
For motor power	300w	300w	1500w	1500w	1500w	300w
Constant output current	4,4A	4,4A	8A	8A	8A	4,4A
Maximum transient current	5A	5A	12A	12A	12A	5A

REFERENCES WITH PRIMARY IN 400 V --PHASE $50 / 60 \mathrm{~Hz}$
Output voltages of these variators: three phase 400 V -

REF	ACVARI-T	ACVAR1-tu	ACVARS-T	ACVARS-TU	VAR-BOX-T	Acvarg
Emergency stop push button	No	Yes	No	Yes	no	no
For motor power	300w	300w	1500w	1500w	1500w	3000w
Constant output current	1.8 A	1.8A	4.8 A	4.8A	4.8 A	7.1A
Maximum transient current	2.3A	2.3A	6.2 A	6.2 A	6.2 A	10.7A

 Converters are supplied ready-to-use for most applications. They include a built-in adjusting terminal (4-digit display, 7 segments) to customize your application by modifying the setings as required and extend the functions. A potentiometer on the front is used to adjust the converter's sampling frequency, and thus the motor rotation speed.
Dimensions: $390 \times 280 \times 185 \mathrm{~mm}$. Dimensions: $390 \times 280 \times 15 \mathrm{~mm}$. \qquad Supplied with Somove
MAIN COMMON FUNCTIONS
Main configurable functions

- Up to 8 preselected speeds
- Rapid stop, freewheel stop, etc.
- Default reset
- Sense of rotation choice

Converter protection and safery systems

- Short-circuit protection:
on outputs, between phases

On outputs, between p

- Internal power supply
- On outputs, between phases and earth
- Overheating and overcurrent protection Motor protection
- Heat protection built into the converter by calculating ${ }^{124}$ - Phase outage protection

TECHNICAL SPECIFICATIONS OF VAR-BOX
All inputs and outputs of the frequency converter are present on safery sockets 4 mm on the froni panel:
Panel.
Power terminals

- Mains inputs/s
- Mains inputs/outputs to the motor
- Output to a brake resistance (PA/+, PB, PC/-)
- Control inputs: 0-1 $0 \mathrm{~V}, 4-20 \mathrm{~mA}$, potentiometer (Al3, COM, $\mathrm{AOV}, \mathrm{AOC}, \mathrm{All}, 10 \mathrm{~V}, \mathrm{~A} \mid 2)$
- Relay contacts outputs (R1A, R1B, R1C, R2A, R2C)

1 potentiometer 5 k Ω, output on 3 sockets / 1 On/Off switch, output on 2 sockets
STUDY CASE FOR
SPEED CONTROLLER ATV32 SPEED CONTRO
SEE REF VAL-VAR

CONTYS from mecartonics is a motor starter which Combines mechanical, electrotechnical and electrorectly starting up motors of up to 3 kW . This compact evice combines power functions (disconnecting witch, commutation) and control functions (protecion). Motor settings can be displayed and program-
ned via a numeric screen. Supplied with SoMove. eazes
protection against overloads and short-circuits. protection against overloads and
protection against isolation faults lequipment
protection only)
reset can be adiusted manually or automatically display of motor settings on the front or on the
offset terminal- electric current consumed per ofstef terminal:- elecric current consumed per
phase - adiustment of thermal circuit breaker alarm for motor values Current, thermal status, etc.)
RRONT FACE

- 6 terminals for three-phase power contacts

2 terminals for the coil's 24 V AC/DC power supply
2 terminals for an auxiliary NO conta NC conta electrical features Comparible with 1 -3kW motors 3-phase contact
-600 V max $/ 12 \mathrm{~A}$ max. -600 V max / 12 A max.
Coil

- supply voltage $24 \mathrm{~V} D \mathrm{DC} / \mathrm{AC}$
- 400V max / 10A

VARIABLE FREQUENCY AC/AC SPEED CONTROLLERS
These speed controllers for 1500 W and 3000 W asynchronous machines are for supplying and programming applications such as belt conveyers, blenders, extruders, pumps, fans and compressors. Putting them into service is rapid and thei programming console makes them very easy to use. Soffware
specific to each make lets you configure and monito operation of the speed controllers. All speed controller and PLC inputs and outputs are available on the front on $\varnothing 4 \mathrm{~mm}$ safery sockets. A potentiometer lets you adiust the sampling frequency of the Speed controller, and the rotation speed of the motor Dimensions $390 \times 280 \times 185 \mathrm{~mm}$. Supplied winh
and USB lead.
Supplied with SoMove

MAIN FUNCTIONS COMMON TO THE 2 MODEL Main configurable functions

- Adiustment of the deceleration/acceleration ramp
- Quick stop/free wheel
- Input configuration to manage the 2 rotation directions, RUN, stop type, - preselected speeds, etc.
- USB Bead output for PC link

Speed controler and motor protection devics

- Output protection against short-circuits between phases
- Protection against overload
- Protection against phase outages

Power terminals

- Mains input / output to motor
- Output to a braking resistance (PA/+, PB, PC/-)

Inputs / Outputs Signals on terminals

- 1 Input Analogue - 10-10VDC
- 1 Input Analogue x...y mA - 1 Inputefy Innuut STO -3 binary outputs
-10 Analogue 0.10 V or $0-20 \mathrm{~mA}$ - 10 Logic $30 \mathrm{~V} / 100 \mathrm{~mA}$

REF	ACVAR325	ACVAR326
Motor power	up to 1500 W	up to 3000w
Power supply	200 to 240 V single-phase	380 to 500 V 3-phase
Frequency	50/60Hz	
Output voltage	$3 \times 230 \mathrm{~V}$	$3 \times 400 \mathrm{~V}$
Nominal output current	8 A	7.1 A
Bluetooth	Yes	
Braking resistance output	On terminals	
Programmation console	Yes	

VARIABLE FREQUENCY AC/AC AND AC/DC SPEED CONTROLLERS

AC/AC SPEED CONTROLLERS - SIEMENS G120

DCVAR2 and DCVAR43 speed controlers control separately excited or permanent ma gnet $D C$ motors. On the tront, the RUN bution powers up the speed controller and the potentiometer varies the speed of rotation of the motor.
The mains and the motor connect to $\varnothing 4 \mathrm{~mm}$ safery terminals.
Supplied with operating instructions.
Supplied with operafing instruction
Dim: $390 \times 280 \mathrm{~mm} \times 185 \mathrm{~mm}$.
Speed controller protection and safery devices

- Mains side input protection by 30 mA residual current circuit-breaker ATpeen - Output protection against short-circuits
- Protection against overloads
- Thermal protection against abnormal temperature rise

Features

- Motor power from 1500 W to 3000 W
$\begin{array}{ll}- \text { Motor power } & \text { from 1500W to 3000W } \\ - \text { Power supply } & 110-115 \mathrm{~V}, 220-240 \mathrm{~V} \text { or 380-415V Single-phase }\end{array}$ - Power supply $50 / 60 \mathrm{~Hz}$
- Armature output voltage
- Nominal armature current
- Field system output voltage
- Number of quadrant in operatio

${ }_{3} 210 \mathrm{M}$ Max
1Q (Ref. DCVAR2 4Q (Ref. DCVAR43) energy relesse on mains

DCVAR2		DCVAR43
	Adjustments on front	
	Speed: Max. and Min.	
Curent linitation		
	Speed stability	

VECTOR SPEED CONTROLLER FOR ENCODER MOTOR

STUDY CASE FOR SPEED CONTROLLER ATV32 PROGRAMMABLE INPUTS / OUTPUTS

 2000 W comparible with our 300 W and 1500 W molors). 8 .pin connector for linking 1024 -pp te ncoder A curvort

 of the direction of rotation, preselececed speedl, of 2 andogue inputs $0.10 \mathrm{~V} / 4-20 \mathrm{~mA}$ and one external braking resistor not supplied.

Features

- vector speed controller $2.2 \mathrm{~kW} / 3 \mathrm{HP}$ max.
- Power supply $3 \times 400 \mathrm{~V}$ AC $50 / 60$
- Speed controller output frequency adiustable from 0.1 to 599 Hz
- Acceleration and deceleration ramp with separate adiustment.
- Vector control of current flo
- Encoder input 1024 pts
- Protection against phase loss, overcurrent, overvoltage, thermal, ett.
- Dim. $390 \times 280 \times 185 \mathrm{~mm}$

Schneider Slectric

ECONOMICAL AC/AC FREQUENCY CONVERTERS

ref. VAL-VAR
EDUCATIONAL OBJECTIVES

- Studying a 3 -phase speed controll
- Studying a setup software and setting the speed controller TEACHING RESOURCES STUDENT \& TEACHER

VAL-VAR is a study case for the speed controller ATV32 for asynchronous machine. It contains all the equipment required for autonomous operatio. The printed PVC face includes the electrical protection and control equipment safery terminals for cabling the inputs/ outputs of the speed controller and taking curren measurements in each phase of the moto

COMPRISES

1 socket + switch unit module for linking to the mains $230 \mathrm{~V}-50 / 60 \mathrm{~Hz}$

- 1 main switch.
- 1 differential magneto-thermal circuit-breaker $16 \mathrm{~A}-30 \mathrm{~mA}$

1 motor circuit-breaker type GV2
1 speed controller for asynchronous machine ATV32 from Schneider® power
0.18 kW . This speed 0.18 kW . This speed controller can be programmed using controls on its front
or from the offset programming graphic terminal. It can also be linked to a PC using the RJ45/USB lead or Bluetooth link if your PC is so equipped. All the control inputs and outputs of the speed controller are offset to the safely terminals:
inputs and oulpuls
-6 binary invuts
-1 analogue input
annlogue input-10...10VDC
1 analogue input $x \ldots .$. y
3 binary outputs
1 analogue output $0 . \ldots 10 \mathrm{~V}$ or 20 A
-1 logic output $30 \mathrm{~V} / 100 \mathrm{~mA}$

- 1 multifunction programming graphic terminal with large screen monochrome $(8$ lines) 240×100 pixels.
This terminal
is
- 1 three-phasa is oftset using RJ45 1 m lead (supplied).

Three-phase asynchronous motor $0.12 \mathrm{~kW}-230 / 400 \mathrm{~V}-\mathrm{AC}$.
The rotation of its shaft can be seen through a translucent safery window. - 1 set of jumpers, a switch and a potentiometer enable immediate operation of the

CASE SUPPLIED READY TO USE WITH

- 1 set of safery leads and jumpers.
- 1 programming graphic terminal . 1 Somove software (Schneider Electrique®) with RJ45/USB lead to link to PC

1 instruction manual, on CD, including the component data sheets and practical assignments for speed controller programming help.

Transportable variable supplies unit (2000W or 4000W)
Supply from mains: 3 -phase $380 \mathrm{~V} / 400 \mathrm{~V}+$ neutral + eart
Outputs: 2 variable DC supplies $0-250 \mathrm{~V}$ and 1 variable AC 3 -phase supply $0-430 \mathrm{~V}$
Protiction of the user in dC

- DC supplies are isolated from mains by an insulation transformer
- The outputs are protected against surges and short-circuits.

- The DC auxiliary outputs is with a double alternation rectification of which the ripple rate changes
with the load with he load
- Emergency stop push button - key reset
- Power cable with industrial 3 -phase plug supplied
- Hard-wearing LED lamps
- Outputs on safety ferminals $\varnothing 4 \mathrm{~mm}$.
- Dimensions $710 \times 600 \times 375 \mathrm{~mm}$ - Weight COMPAK $20: 82 \mathrm{~kg}$ - Poids COMPAK $40: 89 \mathrm{~kg}$.

REF	COMPAK20	COMPAK40
OUTPUT O-250VDC	$8 \mathrm{~A}+$ voltmeter \& ammeter	$16 \mathrm{~A}+$ voltmeter \& ammeter
OUTPUT $0-430 \mathrm{~V} 3$-PHASE	$5 \mathrm{~A}+$ voltmeter \& ammeter	$6 \mathrm{~A}+$ voltmeter \& ammeter
AUXLIARY OUTPUT $0-250 \mathrm{~V}$	$2.5 \mathrm{~A}+$ voltmeter \& ammeter	$2.5 \mathrm{~A}+$ voltmeter \& ammeter

HIGH POWER DC AND 3-PHASE POWER SUPPLIES

This power supply, which is varied using an autorransformer, can be networked so that it can power
other stations. The DC outputs are insulated from the mains, as stipulated in the standard, and monitored by a continuous insulation monitoring device for the safery of users. This monitoring allows the DC output to be networked. The transformer complies with the NFEN61 58 norm

INrRoouction AND DEECRPPTION:

- For 3-peta cabinet, fited on a wheeled base.
- For 3 -phase $400 \mathrm{~V}+$ Neutral + Earth supply from mains
- Voltages can be adjusted using a flywheel.
- One disconnecting switch.
- One key-operated emergency-stop circuit breaker.
- One ammeter for the DC
- One three-position switch: DC / 0 / three-phase
- Two volimeters: one for the $D C$ and one for the three-phase
- Outputs: Can be connected in one of two ways - either using an internal terminal for a network
- Protection: by circuit breakers
- insulation checking by a continuous insulation monitoring device
- UNT Height: $1000 \mathrm{~mm} /$ Widhh: $600 \mathrm{~mm} /$ Depht: 350 mm

REF.	PSY40K	PSY6ok	PSY90k	PSYı20K	PSY150K
MAX ELECTRIC CURRENT IN DC 0-250V	$\begin{gathered} 16 \mathrm{~A} \\ \text { monitored } \end{gathered}$	$\begin{gathered} 24 \mathrm{~A} \\ \text { monitored } \end{gathered}$	$\begin{gathered} \text { 36A } \\ \text { monitored } \end{gathered}$	$\begin{gathered} \text { 48A } \\ \text { monitored } \end{gathered}$	$\begin{gathered} \text { 60A } \\ \text { monitored } \end{gathered}$
MAX ELECTRIC CURRENT 3-PHASE 0-450V	8A	13A	13A	20A	20A
TOTAL POWER	4.000VA	6.000VA	9.000 VA	12.000 VA	15.000VA
FOR MAINS SUPPLY	3-PHASE 400V+N+E				

Power supplies on wheels with speed controller 2 kW , 4 kW $A C$ and/ or $D C$ according to the version selected.

Main start/stop and emergency stop controls on the fron.
Each voltage output is active from a Start/Stop switch. Each voltage output is active from a Start/Stop switch. An indicator light signals their operation. A complete measu-
ring unit displays the alternating values of consumption of the ring unitidisplays
workstions. Other sources are not taken into account in these measurements.
measurements. All the outputs are protected against overloads and shor circuits.

MEASURING UNIT (on AC and ACDC models)
Simple to use thanks to 6 keys on front, it displays the elec-
trical values of the variable three-phase + fixed three-phase - AC speed controller out

- phase-to-ground and composite voltage.
- frequency.
- active, reactive and apparent power in each of the phases and in three-phase.
- power factor in each phase and in three-phase.
- measurement of active, reactive and apparent energy on 4 dials.
REMOTE CO
EMOTE CONTROL OF THE MEASURING UNIT
An R 455 connector on the front of the cabinet enables the unit to be used remotely by means of an integral web page
which displays the electrical values measured.

Dims: AL20-DC / AL20-AC / AL40-DC / AL40-AC : $500 \times 500 \times 980 \mathrm{~mm}$. Weight 90 kg . Dims: AL20-ACDC / AL40-ACDC : $500 \times 800 \times 980 \mathrm{~mm}$. Weight 175kg.									
Ref.	POWER 4000VA								
	VARIABLE BY AUTOTRANSFORMER				3-PHASE $3 \times 400 \mathrm{VAC}$ measuring by	SPEEDCONTROLLERDC 3 KX /	SPEED CONTROLER AC 4KW measuring by CM	$\begin{aligned} & 3 \text { SOCKETS } \\ & 230 \mathrm{~V} \text { PP }+\mathrm{T} \end{aligned}$	MEASURING UNIT см
	DC 0-270VDC-16A	3-PHASE $0-450 \mathrm{VAC}-8 \mathrm{~A}$ measuring by CM	DC AUXILIARY $0-250 \mathrm{VDC}-2.5 \mathrm{~A}$	AC AUXILARY 0-250VAC-2.5A					
AL40-DC	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	
AL40-AC		\checkmark	\checkmark	\checkmark	,		\checkmark	\checkmark	
AL40-ACDC	\checkmark	,							
POWER 2000VA									
Ref.	VARIABLE BY AUTOTRANSFORMER				3-PHASE $3 \times 400 \mathrm{VAC}$ measuring by	SPEED CONTROLLER DC 2KW	SPEEDCONTROLERAC 2 KW Wmeasuring by CM	3 SOCKETS 230V 2P+T	MEASURING UNIT см
	$\begin{gathered} D C \\ 0-270 V D C-8 A \end{gathered}$	3-PHASE 0-450VAC-5A	DC AUXILIARY $0-250 \mathrm{VDC}-2.5 \mathrm{~A}$	AC AUXILARY 0-250VAC-2.5A					
AL20-dC	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	
AL20-AC		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
AL20-ACDC	\checkmark								

Variable DC 0-270VDC

With isolating transformer, to standard NFC 61558 .
Rectification is generously oversized (ripple factor 4%).
Output on 4 mm terminal valid provided the autotransformer is at 0 voltag
Viewing by voltmeter and ammeter. Viewing by voltmeter and ammeter
Variable three-phase $0-450 \mathrm{VAC}$
The proposed voltage is $0-430 \mathrm{~V}$ between phases (450 V for 4000 VA model). Output on 4 mm terminal valid provided the autortansformer is at 0 voltage. Auxiliary $0-250 \mathrm{VDC}$
With isolating transformer, to standard NFC 61558 . Viewing by voltmeter and ammeter.
Double alternating rectification, the ripple factor of which varies with the charge.

Auxiliary 0-250VDC

Viewing by voltmeter and ammeter.

${ }^{3}$-phase $3 \times 400 \mathrm{~V}$ on
Operation 1 quadrant, from 1.5 to 3 kW , outputs for armature 180V-16A and field system $210 \mathrm{~V}-3 \mathrm{~A}$ on 4 mm terminals.
Adiustment of the rotation speed seting by potentiometer on the fron
AC speed controller
Operation 1 quadrant 2 or 4 kW outputs $3 \times 400 \mathrm{VAC}$ on 4 mm terminals.
Adiustment of the rotation speed setting by potentioneter
Adiustment of the rotation speed seting by potentiometer on the front. Configuration with SOMOVE soffware supplied.

AC/DC PORTABLE POWER SUPPLY

DYNAMIC LOADS

Adiustable from 0 to $230 V$ in $D C$ or $A C$, this power supply delivers a constant current of 3 A .
Protected by a thermal-magnetic circuit breaker, the safely of users is ensured by the separation of circuits.
Protected by a thermal-magnetic circuit breaker, the safey of sers is ensured by the separation of circuits.

- Mains input

$$
\begin{aligned}
& \text { Mains cable } \\
& \text { General luminous switch } \\
& 0-210 \mathrm{~V}
\end{aligned}
$$

- DC variable output
- AC variable output - AC variable output - Max current DC or AC - Ontput displays - Input protection - Uutput protectio - DC output smoothing - $\mathrm{AC/DC}$ commutation - Connecting
ref. ISOSECI

AC/DC POWER SUPPLY ON WHEELS (10A)
Supply of AC or DC current in
Mains cable of 3 metres with plug

- Mains supply	230V, single-phase
- ON/OFF	push button + LED lamp
- Emergency stop	with key
- DC output	O-230V
- AC output	0-230V
- Adjustement	by a rotary bution on the top
- Max output current	10A
- Outputs display	1 voltmeter et 1 ammeter
- Input protection	by fuse
- Outputs protection	by circuit breaker
- Users protection	by insulation from mains lin DC mode only
- Filtering ACDC10	no filering. double alternation recification
- Filtering DC10	with filtering. 5% of residual ripple at 10 A .
- Switching	DC - 0 - AC (by rotary swith)
- Dimensions / Weight	H $510 \times$ P $280 \times$ P $330 \mathrm{~mm} / 49 \mathrm{~kg}$
-Wheels	4 (2 of them have a brake)
ACDC	

DUAL DC PORTABLE POWER SUPPLY
This power supply includes

- one variable DC supply with voltmeter \& ammeter
- one fixed DC supply
Protection of users is ensured by galvanic insulation of outputs.

- Mains	Mains cable	
- On/Off	General switch and light	
- DC variable output :	0-240V / 3A	
- DC fixed output:	230V/1A	COMPA MOTORS
- Input protection:	by time delay fuses	
- Output protection	by thermal magnetic circuit-breakers	
- Smoothing :	by capacitors	
- Dimensions / weight :	$210 \times 245 \times 350 \mathrm{~mm} / 20 \mathrm{~kg}$.	

- Height:
- Max. external diameter: 530 mm
- Power consumption: 0.5 kW

INDUSTRIAL FAN MODELS

ReF	SHT-40	SHT-50	SHT-60
Absorbed power	1000 W	1550 W	1650 W
Rotational speed at 50 Hz	2800	2800	1400
Current by phase in A	1,8	3	3,5
Power factor	0,8	0.76	0.7
Air flow in m3/min	96	200	240
Pressure in Pa	700	1050	1100
Sound level in $\mathrm{dB}(\mathrm{A})$ at 1 meter	97	98	92
Weight in kg	28	40	78
Diameter in mm	400	500	600
Overall length	$570 \times 560 \times 480$	$680 \times 660 \times 520$	$920 \times 830 \times 550$

These fans, mounted on a wheeled chassis for easy movement, rotate a around a horizontal axis so that the airflow can be pointed in any direction. These fans make up ideal three
phase loads for connection to a control requiring inductor currents to study

- Supply: 3 -phase $400 \mathrm{~V}+$ earrh
- On/Off switch on the housing of the fan
- Power cord of 5 metre without plug
- Compatible with the 3 -phase 400V frequency converter

FAST CONNECTION OPTION FOR VH2O \& VH2O-400

- Power consumption: 0.5 kW
- Total weight: 27 Kg
-4 models svailable
- 4 models a
motor $230 / 400 \mathrm{~V}-4 \mathrm{~A} / 2,3 \mathrm{~A} \cos \varphi 0,33$
Supplied with type-changing interface for fast connections using
HARTING® connecto
Ref. VH20-N:
motor $230 / 400 \mathrm{~V}-4 \mathrm{~A} / 2,3 \mathrm{~A} \cos \varphi 0,33$ (without interface)
motor 230/400V
Ref. VH20-400:
motor 400/690V-2,3A/1,3A $\cos \varphi 0,3$
Supplied with type-changing interface for fast connections using
HARIIGG® connectors HARTING® connector
Ref. $\mathrm{VH20}-400-\mathrm{N}$:
motor $400 / 690 \mathrm{~V}-2,3 \mathrm{~A} / 1,3 \mathrm{~A} \operatorname{cos\varphi } 0,33$ (without interface)
ref. VH20 motor 230/400V + interface
ref. VH20-N motor 230/400V
ref. VH20-400 motor 400/690V + interface
ref. VH20-400-N motor 400/690V

MOBILE INDUCTIVE LOADS (SINGLE \& 3-PHASE)

The inductor $\mathrm{LH}^{* *}$ can vary the power factor continuously from 0.9 to 0.1
in single-phase and 3 -phase
3 moving laminated cores made from silicium sheets, are moved by a control wheel through 3 coils.

- The reactive power varies from 0.1 kVAR to the rated power. (ie 4 kVAR for $\operatorname{LH} 40$)
- It is possible to exceed the rated power during few minutes.

CONNECTION

- 4 (safery) iumps connect the coils to either 3-phase star 400 V , delta 240 V or single-phase 240 V .

This inase is protected by a fuse

- This inductor exists in 3 standard power ratings.
- Dimensions $670 \times 400 \times 1000$
- Dimensions $670 \times 400 \times 1000 \mathrm{~mm}$
- Male earth socket in standard. Fen
- CEl1010 CATIII 1000 V rms pol2

VARIABLE INDUCTIVE LOAD (SINGLE \& 3-PHASE)

- LH10 is a bench mounted inductive load, single-phase and 3 -phase.

A screw with a handle moves the 3 laminated cores made in silicium sheets in their coils between
2 limits, the safery terminals may be connected to 3 -phase star 400 V , delta 240 V or single-phase 240 V
Dimensions $280 \times 270 \times 150 \mathrm{~mm}$.
Weight 21 kg .

- CEIIO10 CATIII 1000 Vrms pol2

Normal reactive power 1 kVA
Reactive power for 10 min 1.5 kVAR
Constant current by phase
Variation of inductance for each phase $\quad 2 \mathrm{Amax}$
ref. LH10
PORTABLE CAPACITIVE LOADS (SINGLE \& 3-PHASE)
-The CH is a capacive load useable from 0 to the rated power.
4 iump leads to plug in safery ferminals, connect a bank of capacitors in 3 -phase star 400V, delta
6 switches $5 \%, 10 \%, 15 \%, 20 \%, 25 \%, 25 \%$ regulate the load from 0 to the rated power without
interupting the load (ie 0 to 4 KV VA for CH40).

- Saferly a discharge resistor is placed at the eremminals of each capacitor.
- Male earth socket in standard. Female earth socket upon request
- Portable unit lin steel). Dim. 500
- CEl1010 CATIII 1000 Vrms pol

ReF	CH05	CH2O	CH40	CH60
Power	500VAR	2KVAR	4KVAR	GKVAR
Nb of switch	6			
Variation in	steps of 5\%			
Type	portable			
Weight	11 kg	12 kg	13 kg	16kg

MOBILE RESISTIVE LOADS

MADE TO

MESURE

- The high quality of loads depends directly of the quality of swithes used. All of our loads use ultra fast breaker switches, capable of breaking a DC current with an inductive load, for example the current generated by a 3 kWW dynamo.
- The resistive elements consist fa
- The resistive elements consist of a wire coil wound onto a ceramic core and have a good life because
they are coating against the oxydation.
- The input terminals are double insulated and accept equally $\varnothing 4 \mathrm{~mm}$ standard or safery leads

operating mode

- The selection of the operating mode is by 4 insulated input switche

DC mode or 240 V single-phase.
3 -phase sta 400 V
3 -phase star 400 V .
3 -phase delta 240 V .
3-phase delta 240 V .
(Exists also for voltages $127 / 230 \mathrm{~V}$ in 4 kW upon request)

VARIATION

- 6 switches (7 on RH $40 S$ model) with the gradation $5 \%, 10 \%, 15 \%, 20 \%, 25 \%, 25 \%$
allow a continual progression without a break of the load from 0 to 100% in steps of 5% (2.5% on the RH 40)).
- All of the intermidiate values are obtained by turning 1 or 2 switches which can be made simultaneously using 2 hands.

WHEELED UNITS

- Robust construction with furnace baked epoxy paintwork. Excess heat is vented by
natural convection through a grid which prevents contact with any voltages
- Dimensions: $660 \times 400 \times 880 \mathrm{~mm}$
- CEll 1010 CATIIl in intanvard. Female earth socket upon request.
- CE11010 CATIII 1000Vrms pol2

COMPACT RESISTIVE LOADS (SINGLE \& 3-PHASE)

- Using the same switches and resistors as the other models, this load is intended for use on the laboratory bench.
- The ultra fast switches and operating mode iump leads are found on the front panel
- DC and single-phase 240 V mode $/ 3$-phase delta $240 \mathrm{~V} / 3$-phase star 400 V .
(Exists also for voltages $127 / 230 \mathrm{~V}$ in 4 kW - upon request)
Dimensions: $500 \times 220 \times 40$
- Male earth socket in standard. Female earth socket upon request.
- CEI1010 CATIII 1000Vrms pol2

REF	RHP05	RHP2O	RHP40	
W	$0,5 \mathrm{~kW}$	2 kW	4 kW	
ND switches				
Variation in	6	Steps of 5%		
Type	Portable			
Weight	15 kg	18 kg	17 kg	

Setings and superision sofiware is supplied. The supervision unit is fully programmed, ready to run and open to all modifications without restit
Gontware supplied with all versions

- Hightelemperature 40 mm laminated 1 op $750 \times 670 \mathrm{~mm}$
- Console, dimenions $350 \times 160 \times 180 \mathrm{~mm}$
- Overall dimensions $750 \times 670 \times(\mathrm{h}) 1210 \mathrm{~mm}(11460 \mathrm{~mm}$ touch version $)$ - Power supply $b y$ singlephase mains cord 230 V AC

REF		To be combined with a 1500 W motor bench (not supplied) equipped with:Essential:Recommended:		
	MTD2 MTD3	мTD4	MTD5	тTo
Superision by	Integral lo-inch touch screen	${ }_{\text {Integral } 10 \text {-inch }}^{\substack{\text { touch screen }}}$	Your PC	Your PP or Mound Man constal Your PC
Controls and Supervision	On the motor Start Stop - Speed 0 to $1600 \mathrm{rpm}-1$ st and 2 nd speed of rotation Forward/Back Operation - Speed of rotation (+ and -) - Motor overload - Display of torque and speed (if brushless torque sensor) On the brake: From 0 to 100% - Blocking - Free whee Other: Speed controller overload	On the moto Start Stop - Speed 0 to 1600 rpm - 1 st and 2nd speed of rotation Forward/Back Operation - Speed of rotation (+ and -) - Motor overload - Display of torque and speed (if brushless torque sensor) On the alternator: Voltage variation at terminals of rotary field On the resistive load: load variation from 0 to 100% in 6 steps.		
Eaviment		Emergency stop General Start/Stop 2 RJ45 sockets Mains socket 230 V Touch screen colour		Emergency stop - General start/stop 2 RJ45 sockets Mains socket $230 V$ Motor, Load \& Speed control
$\underset{\substack{\text { Eavipment } \\ \text { ofthe cabinets }}}{\text { a }}$	- Front door, closing by 2 key locks: Control panel with indicator lights (marked PVC panel) Transparent panel: view of the speed controller and PLC information Safety system cutting off electrical distribution if opened. - Rear door, closing by 2 key locks: Large PVC surface with complete wiring diagram. Safety terminals 4 mm and connection sockets for: Earths Three-phase asynchronous motor $3 \times 230 \mathrm{~V}$ AC -1500 W Brushless torque sensor (Din. socket) Powder brake. Tacho-generator 0-10/20/60V for 1000 rpm - Main components Differential 30 mA and magneto-thermal circuit-breakers. Contactor for motor control PLC software with 24 Inputs/24 Outputs binary, Ethernet RJ45 Analogue board 4 Inputs 0-10V DC and 2 Outputs 0-10V DC Speed controller ATV32, 1500W-3x230V AC.	- Front door, closing by 2 key locks: Control panel with indicator lights (marked PVC panel) Transparent panel: view of the speed controller and PLC information Safety system culting off electrical distribution if opened. - Rear door, closing by 2 key locks: Large PVC surface with complete wiring diagram. Safety terminals 4 mm and connection sockets for: Earths Three-phase asynchronous motor $3 \times 230 \mathrm{~V}$ AC -1500 W Brushless torque sensor (Din. socket) Powder brake Tacho-generator 0-10/20/60V for 1000 rpm - Main components Differential 30 mA and magneto-thermal circuit-breakers. Cor motor control. PLC soffware with 24 Inputs / 32 Outputs binary, Ethernet RJ45. Analogue board 4 Inputs $0-10 \mathrm{~V}$ DC and 2 Outputs $0-10 \mathrm{~V}$ DC Speed controller ATV32, 1500W-3x230V AC Power supply controlled from the PLC. Powers the rotary field. Resistive load of 2 kW can be controlled from 0 to 100% of load in 6 steps.		

educational objectives
Understanding the different types of electrical motors $\&$ generators. - Studying the operating character

TEACHING RESOURCES STUDENT $\&$ TEACHERThe various functions can be obtained by simple coupling, perfectly explained in Ahe instructions.
Although powered by non-hazardous viliges $/<50 \mathrm{VAC} /<100 \mathrm{VDC})$, the powering up of thes
of protective housing.

DEMO-AC: 48 V ALTERNATING CURRENT

 See Ref. ALI-DEMO.Presentation: The interconnection of the widings on to a didactic terminal box
provides a visual understanding of the coil provides a visual understanding of the coil of the various electrical machines and
their functions. Users are able to see the position of the brushes and their move their Iuncions. Users are able to see the position of the brushes and their move-
ment. It is powered by 48 volt ELV. A full user manual is provided with the ment. II is powered
motor/aliernator.
TECHNICAL DESCRIPTION

- Open frame.
- An alternating current stator.
- An aluminium base.
ngs for supporting the motor shat
Possibilily for studying 8 different motors, with safery terminal connections
2-ple phase motor with capacitors
4 -pole delta connection three--phase motor
4-pole delta connection three-phase motor
Star-delta three-phase asynchronous motor
Star-dliti inree-phecion asynchronous savuirrel cage motor
Dahlander connection
Three-phase slip-ring motor
Synchronous three-phase motor
Three-phase altern
- Extension shafts.
- One slip ring rotor. Enables the functioning of the motor and the alternator - One rotating brush holder
- One brush holder mount.
- Three brushes for the slip-ring motor.
- Half coupling.
- A rotating centrifugal contact.
- A rotating centif

DEVELOPED PRACTICAL WORK

- Single-phase alternating moto
- Alternating motor theory.
- Repulsion-induction motor with auxiliary wiring
- Capacaitior motor.
- Three-phase alternating motor theory.
${ }_{-}^{-2 \text {-pole star motor. }}$ - 4 pole delta motor
- 4 -pole delia motor
- Slip-ring motor.
- Aliernator theory.
- Synchronous motor.

DEMO-DC: 48V DIRECT CURRENT UNIT
Works with the 3 -phase variable $0-48 \mathrm{~V}$ 15A power supply (not included) See Ref. ALI-DEMO.
Presentation: The interconnection of the windings on to a didactic terminal box
provides a visual understanding of the coil of the various electrical machines and provides a visual understanding of the coil of the various electrical machines and create a compound machine. Users are or removed to/from the shunt poles to create a compound machine. Users are able to see the position of the brushes
and their movement. It is powered by 48 volt EIV. A full user manual is provided and their movement. II is powered by 48 volt ELV. A full user manual is provided
with the motor/alternator TECHNICAL DESCRIPTION

- Open frame.
- A direct current stator.
- An aluminium base.
- Two aluminium bearings for supporting the motar sha
- Possibiliy for studying 14 different motors, with safery terminal connections
$D C$ shunt motor/DC shunt motor with commutating poles
$D C$ series motor/DC series motor with commutating poles

Long shunt compound generator
Long shunt compoound generato
Short shunt compound motor
Shun compound motor
Short shunt compound motor with com mutating poles.
Separately excited shunt motor
Universal motor without commutating poles/with commutating poles
Series generator with commutating poles.
Separately excited series source rotor generator
Separatly excied series source stator generator
Self-excited long shunt compund generato
Self-excied long shunt compound generator
Self-excited short shunt compound generator

- An armature
- Half coupling.
developed practical work
- Direct current motor theory.
- Armature reaction.
- Winding polarities
- DC shunt motor with commutating poles.
- Speed control.
- Long shunt compound DC motor
- Long shunt compound DC motor with commutating poles.
- Short shunt compound DC motor.
- Short hhunt compound DC motor with commutating poles.
- DC generator theory
- DC shunt generator.
- Separately excited generator
- Series DC generator with commutating poles
- Series-excitation generator
- Long stunt compound DC generato

DISMANTLED MOTOR

ref. MAS-DEM

MAS-DEM educational objective is theoretical research into, and discovery of the three-phase asynchronous squirrel-cage motor. Presented in a case containing - The motor carcass with stator wiring, fitted with a terminal block.
-

- The squirrel-cage rotor.
- The left and right flanges $+f$ fan.

The 370W motor can be assembled and disassembled depending on needs. This provides a better understanding of three-phase motor technology The instructions cover all theoretical research into the operation and technology involved in the 3 -phase squirrel-cage moitar
EEATURES OF THE CASE Dim. $534 \times 427 \times 182 \mathrm{~m}$

- Weight: 10 Kg

SMEMENS

RHEOSTATS WITH SAFETY TERMINALS 4mm

MODELS 320W-640W-1300W-1900W

RHEOSTATS WITH 3 RANGES ACCORDING TO THE COUPLING

Ref.	MODE 1	MODE 2	MODE 3		
SPECO-2	0 to 2 $2 / 25 \mathrm{~A}$	0 to $1 \Omega / 25 \mathrm{~A}$	0 to 0.58/50A		
SPECO-6	0 to $6.6 \Omega / 14 \mathrm{~A}$	0 to $3.3 \Omega / 14 \mathrm{~A}$	0 to $1.6 \Omega / 28 \mathrm{~A}$		
SPECO-20	0 to 20 2 /8A	0 to 10 $/$ /8A	0 to $5 \Omega / 16 \mathrm{~A}$		
SPECO-50	0 to 46 $2 / 5 \mathrm{~A}$	0 to 23, /5A	0 to $11.58 / 10 \mathrm{~A}$		
SPECO-66	0 to 66, /4.4A	0 to 33, /4.4A	0 to $16.5 \Omega / 8.8 \mathrm{~A}$	-	
SPECO-100	0 to 92, /3.6A	0 to 46. $/ 3.6 \mathrm{~A}$	0 to 23.8/7.2A		
SPECO-136	0 to 1328/3A	0 to 66, /3A	0 to 33, /6 6 A		
SPECO-200	0 to 200 $2 / 2.5$ A	0 to $100 \Omega / 2.5$ A	0 to 50 $2 / 5 \mathrm{~A}$		
SPECO-420	0 to 420 $2 / 1.7 \mathrm{~A}$	0 to 210. $/ 1.7 \mathrm{~A}$	0 to 1058/3.4A	(2)	
SPECO-660	0 to 660 $2 / 1.4 \mathrm{~A}$	0 to $330 \Omega / 1.4 \mathrm{~A}$	0 to 1658/2.8A		
SPECO-1,3K	0 to 1.3k $/$ / 1 A	0 to $650 \Omega / 1 \mathrm{~A}$	0 to 325 / /2A		
SPECO-2K	0 to $2 \mathrm{~K} \Omega / 0.8 \mathrm{~A}$	0 to $1 \mathrm{~K} \Omega / 0.8 \mathrm{~A}$	0 to 500 / /1.6A		
SPECO-6K	0 to 0.6 k / $/ 0.44 \mathrm{~A}$	0 to $3.3 \mathrm{~K} /$ / 0.44 A	0 to $1.6 \times \Omega / 0.9 \mathrm{~A}$		
SPECO-20K	0 to 20k $2 / 0.25 \mathrm{~A}$	0 to $10 \mathrm{~K} \Omega / 0.25 \mathrm{~A}$	0 to 5 K / $/ 0.5 \mathrm{~A}$	(3)	

STANDARD TRANSFORMERS

Insulation transtormers which conform to standard NFEN61 158 with protective cover (contact us regarding bare models).
Tolerance 10%
Value at 100 Hz (or 5 OHz in fullwave)
CONNECTION METHOD
To be specified when ordering

- Primary : 84 mm safery terminals or mains cable $2 P+E$ (please select).

The transformers of this table are with one winding at the primary and one winding at the secondary, without intermediate taps.

In other cases, please contact us.
Ref. Power VA Type MN00 40 Moulded MN01 63 Moulded MNO2 100 Moulded MNO3 100 Mưded MN04 200 Covered MN05 250 Covered MN06 300 Covered MN07 400 Covered MN08 500 Covered MN09 630 Cover MN10 750 Covered MN11 1000 Covered MN12 1600 Covered MN13 2500 Covered MN14 3000 Covered MN15 4000 Covered

COVERED SINGLE-PHASE INDUCTION COILS (SAFETY TERMINALS)

	1 mH	3 mH	10 mH	30 mH	100 mH	300 mH	1H	3H
0,1A	/	1	1	1	/	/	L101	L301
0,5A	/	/	/	$\begin{aligned} & \text { L3OMO5 } \\ & (4,7,7 \Omega) \end{aligned}$	$\begin{gathered} \text { L100M05 } \\ (11 \Omega) \end{gathered}$	$\begin{gathered} \text { L300MO5 } \\ (10,3 \Omega) \end{gathered}$	$\begin{aligned} & L 105 \\ & (23 \Omega) \end{aligned}$	$\begin{gathered} \stackrel{L 305}{(30,8 \Omega)} \end{gathered}$
1A	$\begin{gathered} L(1,21) \\ (0,258) \end{gathered}$	/	$\begin{gathered} \text { L10M1 } \\ 8(0,6,6) \end{gathered}$		$\begin{gathered} \text { L1000M1 } \\ (2,27 \Omega) \end{gathered}$	$\begin{gathered} (2,8000 \Omega 1 \\ (2,80 \Omega) \end{gathered}$	$\underset{(8,2)}{L 11}$	$\begin{gathered} L 31 \\ (18,00 \Omega) \end{gathered}$
2A	,	1	$\begin{aligned} & \text { L10M2 } \\ & (0,5 \Omega) \end{aligned}$	$\begin{aligned} & \angle 30022 \\ & (0,80 \Omega) \end{aligned}$	$\begin{aligned} & \text { L100M2 } \\ & (1,40 \Omega) \end{aligned}$	$\begin{aligned} & \angle 30012 \\ & (4,00 \Omega) \end{aligned}$	$\underset{(4,70 \Omega)}{L 2(})$	$\begin{gathered} L(3,30 \Omega) \\ (8,0) \end{gathered}$
3A	1	$\underset{\substack{L 3 M 3 \\(0,24 \Omega)}}{\substack{2}}$	$\begin{gathered} \text { L1003 } \\ (0,34 \Omega) \end{gathered}$	$\begin{aligned} & \text { L30M3 } \\ & (0,66 \Omega) \end{aligned}$	$\begin{aligned} & \text { L100M3 } \\ & (1,00 \Omega) \end{aligned}$	$\begin{aligned} & \text { L30003 } \\ & (0,00 \Omega) \end{aligned}$	$\stackrel{L 13}{(4,30,8)}$	$\underset{(0,40,2)}{L 33}$
4A	$\begin{aligned} & \text { L1M4 } \\ & (0,16 \Omega) \end{aligned}$	$\begin{aligned} & \stackrel{L 3 M 4}{(0,20 \Omega)} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { L10M4 } \\ & (0,29 \Omega) \end{aligned}$	$\begin{aligned} & \hline(30044 \\ & (0,44 \Omega) \end{aligned}$	$\begin{gathered} \text { L100044 } \\ (0,85 \Omega) \end{gathered}$	$\begin{aligned} & \text { L300M4 } \\ & (4,10 \Omega) \end{aligned}$	$\underset{(2,008)}{L 14}$	/
5A	$\begin{aligned} & \text { LIM55 } \\ & (0,099) \end{aligned}$	$\begin{gathered} \text { L3M5 } \\ (0,13 \Omega) \end{gathered}$	$\begin{gathered} L 10 M 5 \\ (0,19 \Omega) \end{gathered}$	$\begin{aligned} & \angle 30 M 5 \\ & (0,20 \Omega) \end{aligned}$	$\begin{gathered} \text { L100M5 } \\ (0,52 \Omega) \end{gathered}$	$\begin{aligned} & \text { L300M5 } \\ & (1,70 \Omega) \end{aligned}$	$\stackrel{L 2}{(2,30 \Omega)},_{L 15}$	/
6A	$\begin{aligned} & \text { L1M6 } \\ & (0,09 \Omega) \end{aligned}$	$\begin{gathered} \angle 3 M 6 \\ (0,13 \Omega) \end{gathered}$	$\begin{aligned} & \text { L10M6 } \\ & (0,19 \Omega) \end{aligned}$	$\begin{aligned} & L 30 M 6 \\ & (0,40 \Omega) \end{aligned}$	$\begin{gathered} \text { L1000 }(0,60 \Omega) \\ (10) \end{gathered}$	$\begin{aligned} & L 300 M 6 \\ & (0,90 \Omega) \end{aligned}$	$\underset{(1,60 \Omega)}{L 16}$	/
8A	$\begin{gathered} \text { L1M8 } \\ (0,04 \Omega) \end{gathered}$		$\begin{aligned} & L 10 M 8 \\ & (0,12 \Omega) \end{aligned}$	$\begin{gathered} \angle 30 M 8 \\ (0,15,5) \end{gathered}$	$\begin{aligned} & \text { L100088 } \\ & (0,30 \Omega) \end{aligned}$	$\begin{aligned} & L 300 M 8 \\ & 5(0,66 \Omega) \\ & \hline \end{aligned}$		
10A	$\begin{aligned} & \text { L1M10 } \\ & (0,04 \Omega) \end{aligned}$	$\begin{gathered} L 3 M 10 \\ (0,066 \Omega) \\ \hline \end{gathered}$	$\begin{aligned} & \text { LOM10 } \\ & (0,15 \Omega) \end{aligned}$	$\begin{aligned} & \angle 30 M 100 \\ & (0,168) \end{aligned}$	$\begin{gathered} \text { L100M10 } \\ (0,40 \Omega) \end{gathered}$	$\begin{gathered} \substack{(0,500110)} \\ \hline(0,510 \end{gathered}$		
15A	$\begin{gathered} L 1 M 15 \\ (0.0121 \Omega) \end{gathered}$	L3M15	$\begin{aligned} & \hline \text { L10M15 } \\ & (0.070 \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Le, } 30 M 15 \\ (0,13 \Omega) \end{array} \end{aligned}$	$\begin{aligned} & \text { L100M15 }(0,30,8) \end{aligned}$	L300M15		
20A	$\begin{aligned} & \text { (0,01920 } 20 \\ & (0) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} 2,3 M 20 \\ (0,03 \Omega \Omega \end{array} \end{aligned}$	$\begin{aligned} & L 10 M 20 \\ & (0,06 \Omega) \end{aligned}$	$\begin{aligned} & \text { L30M20 } \\ & (0,09 \Omega) \end{aligned}$	L100M20	L300M20		

3-PHASE TRANSFORMERS

SECONDARY (choice of couplings and voltage)
STAR TYPE SEPARATE TYPE

ZIG-ZAG TRANSFORMERS

	POWVER		All couplings
REF	Secondary	Primary	Secondary
ZIG11	1000VA	$230 / 400 \mathrm{~V}$	$6 \times 115 \mathrm{~V}$ or $6 \times 133 \mathrm{~V}$
ZIG12	1600 VA	$230 / 400 \mathrm{~V}$	$6 \times 115 \mathrm{~V}$ or $6 \times 133 \mathrm{~V}$
ZIG13	2500 VA	$230 / 400 \mathrm{~V}$	$6 \times 115 \mathrm{~V}$ or $6 \times 133 \mathrm{~V}$
ZIG14	3000 VA	$230 / 400 \mathrm{~V}$	$6 \times 115 \mathrm{~V}$ or $6 \times 133 \mathrm{~V}$
ZIG15	4000 VA	$230 / 400 \mathrm{~V}$	$6 \times 115 \mathrm{~V}$ or $6 \times 133 \mathrm{~V}$

PRINCIPLE

Our primary zig-zag transformer comprises three windings, whereas the secondary one comprises six half-windings. All of these windings are
galvanically isolated from each other. Students practise wiring the gavanicaly isolated from each other. Students practise wiring the primary winding into a stat or detita, and the secondary winding into a
star, delta or zig-zag. In total, this is six schematics: $\mathrm{Yy}, \mathrm{Yd}, \mathrm{Yz}, \mathrm{Dy}$, star, delta
Dd , Dz .

The coils are designed in such a way that the voltage outputs always correspond to the $230 / 400 \mathrm{~V}$ standard. The section of the wire is calculated in such a way that the rated power in the secondary is available
regardess of the connection schematic used.

Interconnections are made using safely cables, directly on the
board. The following are symbolised on the terminal board:

- the coils
- the coils
- with a point, the direction of the coil
- with ypper case leter, the terminals of the primary transformer - with lower case letters, the terminals of the secondary transformer - the safery conductor

Comprehensive instructions with Fresnel diagrams explain how the combination of coils alters the phase-to-ground and composite voltages. They explain how to determine the time index.
A method shows how to find out the direction of the coils in an unmarked
zig-zag transformer. zig-zag transformer.

EDUCATIONAL OBJECTIVES

\qquad

- Study of a 3-phase transformer with no load, in short-circuit and loaded - Creation of Star / Delta wiring according to the primary/secondary - Electages selected
- Electrical measurements of the different values

Proposed practical work TEACHING RESOURCES \& PRACTICAL WORK

- Understanding of the characterisics given on the identification plate
- Readings of the charactereristicis with no load, in short-circuit and loaded
- Study and influence of the different primary and secondary couplings
- Calculation of the transformation ratio
- Power statement with the method of the 2 waltmeters
- Study of the equivalent diagram for one phase
composition of the mobile cabinet on wheels
- Emergency stop, main switch, 'On' indicator light
- Emergency stop, main switch, 'n' indicator lig
- Variable three-phase autotranstormer
- 1500 VA three-phase transformer

Primary 3×23 V / Secondary $3 \times 230 \mathrm{~V}$ separate windings
-4 digital multit-displays $(2$ at primary and 2 at secondary showing the active

- digital multi-displays (2 at primary and 2 at secondary showing the
power, voltage, current and cosp
- 4 mm safely terminals including 3 at secondary for conneccing a load
- 4 mm safery terminall including 3 at secondary for connecting a load
- HYPRA plug with 3 -m lead for linking to the three-phase network
- HYPRA plug with 3 -m lead for linking to the three-phase network
- Dimensions: $710 \times 600 \times 375 \mathrm{~mm}$ - Weight: 72 kg
- Supply voltage: $3 \times 400 \mathrm{~V}-\mathrm{AC} 50 \mathrm{~Hz}+\mathrm{N}+\mathrm{E}$

An autorransformer enables the voltage at the primary to be varied.
Separate windings allow for practical work with no load in shot-cir
Separate windings allow for practical work with no load, in short-circuit, and loa-
ded with differen Star or Delta couplings. ded with different Star or Delta couplings.

TRAINING MODEL OF SINGLE-PHASE TRANSFORMER 140VA

ref. ETM 140
educational objectives _ - Theoritical practical study of a singlephase transformer with no load and
loaded. - Studying the electromagnetic induction User's manual with theoretical study

ETM140 allows the study of a single phase transtormer. It is made up with a portable console which includes.
$1 \times 140 \mathrm{VA}$ single phase transformer
Primary: 230 V power supply Use: 240 V protected by fuses and output on safery ferminals.
Secondary: $1 \times 15 \mathrm{~V} / 3.6 \mathrm{~A}$ winding, $2 \times 12 \mathrm{~V} / 3.6 \mathrm{~V}$ independent windings, fuses protected and output on safeyt terminals.

- 3 displays on the primary (Current - Voltage - Power) show the absorbed electric values.
- 1 variable single phase auvotransformer, $0-240 \mathrm{~V} 2.5 \mathrm{~F}$ output, fuses protected, with safery terminals, can supply the transformer primary
- 1 set of $\varnothing 4 \mathrm{~mm}$ safery test leads.

User's manual includes: A theoretical study about single phase transformer and practical works with the 140 VA transformer.
Specifications:

- Dimensions: $1000 \times 160 \times 180 \mathrm{~mm}+$ handle
- Weight: 18 kg
- Supply: 230 V mains cable
- The primary is powered by the mains supply (230V) - The secondary can be connected by secure terminals of $\varnothing 4 \mathrm{~mm}$.
- 2 powers arailable.
- Dimensions : $210 \times 245 \times 350 \mathrm{~mm}$.

| REF | SEC1 | SEC2 | SEC3 | SEC4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Output voltage | $0-240 \mathrm{~V}$ | | $0-48 \mathrm{~V}$ | |
| Current | 2.5 A | 5 A | 12.5 A | 25 A |
| Weight | 19 kg | 25 kg | 27 kg | 26 kg |

TRANSFORMERS
ISOLATED FROM THE MAINS

SAFETY DISMANTLED TRANSFORMER

User safery is maintained by SAFETY TERMINALS
回

- Stacking of silicon sheet in U-shape.
- H: 200 mm
- $40 \times 40 \mathrm{~mm}$ section
- The magnetic circuit is fixed onto a $230 \times 150 \mathrm{~mm}$
base with rubber feet
Two quick gripping clamps hold the head,
closing the magnetic circuit

SECONDARY COIL

BARE DESIGN

Single-phase
Ref

Single-phase						
Ref	Power	Primary	Secondary	Secondary	Weight	Dims mm
ALT5N	1.25kVA	220/240V	0-250V	5A	5,2kg	$151 \times 151 \times 123 \mathrm{~mm}$
Alt7N	1.85kVA	$220 / 240 \mathrm{~V}$	$0-260 \mathrm{~V}$	7A	7.7kg	$175 \times 175 \times 123 \mathrm{~mm}$
Altis	3.38 kVA	220/240V	$0-260 \mathrm{~V}$	13 A	13,3kg	$233 \times 233 \times 123 \mathrm{~mm}$
VAR92N	5.20kVA	220/240V	0-260V	20A	19 kg	$294 \times 294 \times 145 \mathrm{~mm}$
Three-phase						
Ref	Power	Primary	Secondary	Secondary	Weight	Dims mm
TRT5N	3.72kVA	380/400V	0-430V	5A	19kg	$155 \times 155 \times 407 \mathrm{~mm}$
TRT8N	6.23kVA	$380 / 400 \mathrm{~V}$	0.450V	8A	27 kg	$181 \times 181 \times 407 \mathrm{~mm}$
TRTI3N	10.13 kVA	380/400V	0-450V	13 A	39kg	$233 \times 233 \times 422 \mathrm{~mm}$
3VAR92N	15.60 kVA	380/400V	0.450V	20A	56kg	$310 \times 310 \times 402 \mathrm{~mm}$

COVER DESIGN - PRIMARY ON MAINS CABLE

Single-phase						
Ref	Power	Primary	Secondary	Secondary	Weight	Dims mm
ALT5A*	1.25 kVA	220/240V	0-250V	5A	6.2 kg	Ф170 $\times 157 \mathrm{~mm}$
ALT7A*	1.85kVA	220/240V	$0-260 \mathrm{~V}$	7A	8.8kg	$0202 \times 157 \mathrm{~mm}$
ALTI3A*	3.28kVA	220/240V	0-260V	13 A	13.5 kg	¢268 $\times 157 \mathrm{~mm}$
ALT15A	3.90kVA	220/240V	0-260V	15 A	22kg	$286 \times 286 \times 200 \mathrm{~mm}$
VAR92P	5.20kVA	220/240V	0-260V	20 A	25,5kg	$350 \times 320 \times 550 \mathrm{~mm}$
* fuses at secondary						
Three-phase						
Ref	Power	Primary	Secondary	Secondary	Weight	Dims mm
TRT8A	6.23kVA	380/400V	0.450V	8A	33kg	$200 \times 200 \times 468 \mathrm{~mm}$
TRTI3A	10.13 kVA	$380 / 400 \mathrm{~V}$	0-450V	13 A	48kg	$286 \times 286 \times 488 \mathrm{~mm}$
tri30A	23.38 kVA	380/400V	0.450V	30 A	92kg	$450 \times 450 \times 700 \mathrm{~mm}$

COVER DESIGN WITH CIRCUIT BREAKERS \& LIGHT - PRIMARY ON MAINS CABLE

ref. PSYJR

CEIO10 CATIII 1000Veff pol2
Inductor equipped with safery terminals. The whole unit is double insulated. The inductance coil is ifited in a transparent case.
The handle and moving parts are metal.

- Inductance: progressively adiustable from 0.15 to 1.4 H .
- Resistance: 12Ω
- Max. current: 2 A
- Max voltage : 250 V
- Orvervoliage factor: with a stacking of silicon sheets

Graduated in Henry and in centimetres

- Weight: 7kg

www.langlois-france.com
info@langlois-france.com - Tél. : 0033556751333
Z.I. du haut-vigneau 33174 Gradignan cedex

